Towards A Modular End-To-End Machine Learning
Benchmarking Framework

Robert Bayer Ties Robroek Pimar To6ziin
IT University of Copenhagen IT University of Copenhagen IT University of Copenhagen
Denmark Denmark Denmark
roba@itu.dk roba@itu.dk pito@itu.dk

Abstract

Machine learning (ML) benchmarks are crucial for evaluating
the performance, efficiency, and scalability of ML systems,
especially as the adoption of complex ML pipelines, such as
retrieval-augmented generation (RAG), continues to grow.
These pipelines introduce intricate execution graphs that
require more advanced benchmarking approaches. Addition-
ally, collocating workloads can improve resource efficiency
but may introduce contention challenges that must be care-
fully managed. Detailed insights into resource utilization
are necessary for effective collocation and optimized edge
deployments. However, existing benchmarking frameworks
often fail to capture these critical aspects.

We introduce a modular end-to-end ML benchmarking
framework designed to address these gaps. Our framework
emphasizes modularity and reusability by enabling reusable
pipeline stages, facilitating flexible benchmarking across
diverse ML workflows. It supports complex workloads and
measures their end-to-end performance. The workloads can
be collocated, with the framework providing insights into
resource utilization and contention between the concurrent
workloads.

CCS Concepts: - Computing methodologies — Machine
learning; Concurrent computing methodologies; « Gen-
eral and reference — Evaluation.

Keywords: Benchmarking, Deep Learning, Edge Computing

ACM Reference Format:

Robert Bayer, Ties Robroek, and Pinar T6ziin. 2025. Towards A Mod-
ular End-To-End Machine Learning Benchmarking Framework. In
3rd International Workshop on Testing Distributed Internet of Things
Systems (TDIS °25), March 30-April 3, 2025, Rotterdam, Netherlands.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3719159.
3721223

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

TDIS °25, Rotterdam, Netherlands

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1526-6/2025/03
https://doi.org/10.1145/3719159.3721223

1 Introduction

The rapid advancements in machine learning have led to
an explosion in the diversity of algorithms, models, and sys-
tem architectures. Evaluating these systems effectively has
become critical, necessitating benchmarking tools that pro-
vide meaningful insights into their performance, efficiency,
and scalability. State-of-the-art benchmarks, however, miss
complex use cases and broader essential metrics.

Complex pipelines. The fast evolution of Al has brought
us machine learning pipelines that are increasingly complex
and rarely provide a straight-line-like execution. They often
involve interactions with other systems, dependencies, or
loops, prominently showcased by retrieval-augmented gen-
eration (RAG). These systems are often composed of simpler
repeated operations, such as multiple LLM generation calls,
introducing opportunities for code reuse.

Collocation. Many machine learning (ML) systems could
benefit significantly from collocation ([21]) by running mul-
tiple tasks concurrently to maximize efficiency. This is also
relevant at the edge as Al increasingly operates on end-user
hardware, which must handle diverse and concurrent work-
loads. However, no existing benchmarking tools measure the
interactions or contention between collocated tasks, leaving
a significant gap in evaluating performance under realistic
operating conditions.

Alternative Metrics. In addition to these concerns, cur-
rent benchmarks often disregard resource and power utiliza-
tion. Even when two devices deliver similar performance
levels, one may operate at significantly lower utilization, pro-
viding opportunities for collocation. Power efficiency and
resource usage are particularly important for edge devices
and energy-sensitive applications, where performance per
watt is often a critical metric.

In this paper, we address these challenges with our vision
of a new framework for benchmarking machine learning sys-
tems. This benchmark will follow the following principles:

e Modularity and Reusability: We adopt a modular de-
sign to address the inefficiency caused by indepen-
dently developed use cases. Pipelines are constructed
from reusable stages, allowing researchers to focus on
a specific part of a system.

https://doi.org/10.1145/3719159.3721223
https://doi.org/10.1145/3719159.3721223
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3719159.3721223

TDIS 25, March 30-April 3, 2025, Rotterdam, Netherlands

e Complex Pipelines: We allow for complex execution
graphs and dependencies between stages. Furthermore,
the framework supports specifying priorities between
inputs, combining inputs from multiple stages, or spec-
ifying depths of queues between the stages.

e Comprehensive Metrics for Resource Utilization: The
framework integrates with radT [20], supporting col-
lection of software and hardware metrics for both the
full pipeline and each of the stages, allowing users to
identify resource needs and bottlenecks.

e Support for Concurrent Workloads: The framework
provides tools for running collocated workloads using
the variety of collocation mechanisms available, offer-
ing insights into how systems perform under realistic
operating conditions and potential ways of mitigating
contention between them.

In the rest of the paper, we discuss related work and our
motivation in Section 2, followed by our design in Section 3,
and conclude with Section 4.

2 Background and Motivation

Machine Learning Benchmarking. Standardized bench-
marking is essential for evaluating machine learning systems’
performance, enabling fair comparisons across diverse hard-
ware and software configurations. Several benchmark suites
have been developed to assess various aspects of machine
learning system performance.

The MLPerf suite [4, 10, 18, 19] has established itself as
the most prominent benchmarking suite that provides dis-
tinct benchmarks tailored to various hardware scales, en-
suring relevance across a broad range of deployment sce-
narios. However, this approach is not without drawbacks.
Developing benchmarks with focused use cases for specific
hardware ranges creates gaps, which are not covered by
any specific benchmark, leading to underutilized devices
under test, as resource requirements of larger benchmarks
exceed the amount available on these devices. For example,
small edge devices like Google Coral [9] often fall into gaps
between these benchmarks, leaving their performance in-
adequately measured and their full potential untapped. A
significant limitation of existing tools is the lack of modu-
larity. Use cases are often developed independently, which
hinders their adaptability to new scenarios and slows the
evolution of benchmarking methodologies. Researchers fre-
quently find themselves constrained by predefined use cases
or forced to create their own training and inference scripts,
which can duplicate efforts and provide inadequate compari-
son points for systems.

EEMBC MLMark [25] addresses the gap between the dif-
ferent scales of MLPerf benchmarks, evaluating inference
on non-phone small edge devices. The benchmark targets
vision tasks but has not been updated since 2020.

Bayer et al.

TPCxAI [7], in contrast, provides an end-to-end evaluation
of classical machine learning workloads, including loading
and preprocessing of data, which many benchmarks omit.
Similar to prior TPC benchmarks, TPCxAI supports scaling
the workload, enabling use on different scales of hardware.
However, even the smallest scaling factor remains too large
for small edge devices [6]. Besides measuring the end-to-
end performance, the benchmark decomposes the execution
of use cases into separate stages, allowing for independent
tracking of their throughput and latency and showing pos-
sible contention when running concurrent workloads. Our
benchmarking framework borrows these ideas and applies
them to deep-learning-specific workloads. We build upon
these ideas by leveraging the decomposition of the pipelines
into stages not only for the attribution of metrics but also to
aid code reuse. This feature is especially useful with the intro-
duction of compound Al systems [13-15], which use simpler
modules such as LLM inference and reuse them multiple
times to compose their complex underlying pipelines. These
stages are further parametrizable, which allows researchers
working on specific optimizations to perform comparative
studies of their system against the state of the art on a wide
variety of use cases, with clearly defined boundaries of op-
timizations. Besides stage-specific latency and throughput,
our framework gives a better overview of the impact the
specific stages have on resource utilization and contention.

Hardware Monitoring. While large-scale deep learning
is ever-increasing in popularity, there are plenty of use cases
where resources are underutilized [11]. GPUs are the prime
accelerators for deep learning training and maximizing their
utilization is key to efficient use of the hardware. A single
training pipeline may not be sufficient to use the accelerator
fully, as, for example, the model trained or the dataset may
not be large enough to utilize all resources [5, 12, 21, 22, 26].
This underutilization poses a key problem for both small
setups, where practitioners want to get the most out of their
setup, and on the data center scale, where such inefficiencies
build up.

The machine learning ecosystem includes a range of sys-
tems for tracking ML workloads and metric collection, in-
cluding MLOps platforms like MLFlow [31], WandB [1],
PolyAxon [17], and Neptune [23], and live monitoring tools
such as TensorBoard [2]. These systems share a background
focused on collecting model performance metrics for finding
the best model configuration, with just barebones support for
hardware monitoring. Considering the impact hardware has
on machine learning pipelines, systems need to be future-
proofed by providing hardware monitoring support as a
mainstay feature, not as an afterthought.

While GPU manufacturers such as Nvidia provide tools for
monitoring their hardware, there are challenges in both the
collection and interpretation of these metrics [8, 20, 21, 28-
30]. We defer our metric collection to radT [20], a tool that

Towards A Modular End-To-End Machine Learning Benchmarking Framework TDIS 25, March 30-April 3, 2025, Rotterdam, Netherlands

- ~
g Orchestrator N
! \
1 - T T T T T TS E eSS E S TS EEEEE TSRS s E ~ N 1
config.yaml : 2. Configure 4 RadT wrapper 3 :
1 collocation 1 P ~ -
1 7> Collocation manager | 7, ¢, — = = = = = = = = = = = == 1 !
! 1 :,{ Pipeline process vl :

; ; i 1
1. Submit benchmark | 1 L =— : : : >{ Pipeline builder L :
configuration s : 3. Start pipeline o 5. Startload1 1|
: : processes n0n 4. Compose generation : : '

1 !

1 1 11 execution graph 1
1 1 |:| \ 4 Query A 4 : : A
11 . < 1
: > Config parser : i : ; Execution graph C . Load generator : : "
1 1 ‘ll Result !
1 \ Y ¢ !
\ Y Soococomoocoobocoboo oD oo o oo - ! ’ 1
\ A - e = = e = = = ~ ’

- e e E e R S e EE SN R M R e M e M G M M M em e e o

Figure 1. System architecture of the benchmarking framework, showing the interactions between its components.

expands on MLFlow [31] by providing rigorous support for
software and hardware metric collection. This allows us to
collect, process, and visualize all artifacts and data from
pipeline runs in a single place. In particular, radT has dedi-
cated support for metric collection under workload colloca-
tion, which further aligns with our requirements.

3 Modular ML Benchmarking Framework

Overview of End-to-End ML Training. Figure 1 visu-
alizes the design of the benchmarking framework and the
interactions between its components. The framework con-
sists of the orchestrator, responsible for orchestrating the
concurrent pipeline runs based on user-defined benchmark
configurations. After submission (1.) and subsequent parsing
of the configurations, the orchestrator starts a new process
for each of the pipelines using the radT wrapper by pro-
viding a collocation configuration (2.). radT starts (3.) and
registers the pipelines in MLFlow, initializes the data col-
lection, and sets up the workload collocation mechanisms
when applicable. Each of the pipelines is then responsible
for building its own execution graph (4.) and load generator
before starting the load generation (5.) and processing of the
generated queries.

Modular Architecture. The benchmark runs are config-
ured through YAML files, which modify the execution of the
benchmark and all of its components. At the root of a bench-
mark run is the benchmark itself with all of the concurrently
running machine learning pipelines, as shown in an excerpt
of an example configuration file in Figure 2. For each of these
pipelines, users configure the load generation behaviour and
the structure of the execution graph. The load generator is
responsible for accepting an input dataset of the pipeline and
generating workload by sampling from the dataset at spe-
cific time intervals. Users can choose between synchronous
or asynchronous load generation, with planned support for
replay of traces. The execution graphs of the pipelines are

1
2
3

I NEL IS

11
12
13
14
15
16
17
18
19
20
21
22
23
24

name: "Mixed benchmark with training"
pipelines:
- name: EfficientNetv2 S Imagenette inference
inputs: [0]
outputs: [2]
loadgen:
type: poisson
max_queries: 2000
timeout: 20000
queue_depth: 100
config:
rate: 15 # average #requests/sec
stages:
- name: Imagenette dataset
id: o
outputs: [1]
type: dataset
module_name: torchvision_dataset
config:
dataset_name: Imagenette # must be title-case
split: [val]
#preload: True
batch_size: 1

Figure 2. Head of a .yaml file that defines a pipeline. Our
modular approach allows for rapid construction and reuse.

built from available stages. In order to accommodate the use
of complex ML systems such as RAG, the execution graphs
support forks and cycles. To achieve this, each of the stages
runs in a separate thread and accepts a variable number of
inputs. Incoming requests are stored in queues, which can
be polled separately based on priority or combined to merge
incoming requests.

Use Cases. Supporting our design goals of modularity and
reusability (Section 2), we include a breadth of use cases that
reflects the current deep learning landscape. New pipelines
can reuse modules from these implementations.

Image classification has been one of the leading areas in
deep learning research. Our implementation of TorchVision
[16] allows the users to train 20 model families, based on
CNN and transformer architectures, on all 38 classification

TDIS 25, March 30-April 3, 2025, Rotterdam, Netherlands

datasets available in TorchVision. TorchTune [24] allows
users to use LoRa-based fine-tuning methods on 13 LLM
model families and datasets available in the library. Further-
more, users can again use the newly trained or pre-trained
model for inference.

HuggingFace [27] is a staple in LLM fine-tuning and in-
ference. We include this library as an LLM alternative to
TorchTune with the same feature set but a broadened set of
models and datasets.

Finally, we include Self-RAG [3] to provide an example
of a modern complex machine learning use case. This use
case presents a more complex pipeline than the rest, having
multiple LLM generation calls, branches, and loops. The Self-
RAG use case currently supports knowledge graph and SQL
database retrieval, including LLM generation as a fallback.

4 Conclusion

We introduce a benchmarking framework for modern ma-
chine learning pipelines that promotes modularity, reuse of
pipeline stages, and a high decree in supporting novel use
cases. Furthermore, we identify the ever-increasing impor-
tance of resource utilization, providing immediate support
for wide metric collection and collocation of workloads. Our
benchmarking framework is easily adaptable while also sup-
porting a wide range of use cases out-of-the-box. This way,
we provide a unique solution that can handle increasingly
complex modern pipelines while also minimizing friction in
the user experience.

Acknowledgments

The work is funded by the Novo Nordisk Foundation Natu-
ral and Technical Sciences program under grant agreement
number NNF220C0079398.

References

[1] 2020. Weights and Biases. https://wandb.ai/site

[2] Martin Abadi. 2016. TensorFlow: A system for large-scale machine
learning. (2016), 21.

[3] Akari Asai, et al. 2023. Self-RAG: Learning to Retrieve, Generate, and
Critique through Self-Reflection.

[4] Colby Banbury, et al. 2021.
arXiv:2106.07597 [cs]

[5] Sebastian Baunsgaard, et al. 2020. Training for Speech Recognition on
Coprocessors. arXiv:2003.12366 (March 2020).

[6] Robert Bayer, et al. 2023. TPCx-AI on NVIDIA Jetsons. In Performance
Evaluation and Benchmarking. Vol. 13860. Springer Nature Switzerland,
Cham, 49-66.

[7] Christoph Briicke, et al. 2023. TPCx-AI - An Industry Standard Bench-
mark for Artificial Intelligence and Machine Learning Systems. Pro-
ceedings of the VLDB Endowment 16, 12 (Aug. 2023), 3649-3661.

[8] Paul Elvinger, et al. 2025. Measuring GPU utilization one level deeper.

[9] IEEE Spectrum. 2019. The Coral Dev Board Takes Google’s Al to the
Edge. IEEE Spectrum (2019). https://spectrum.ieee.org/the-coral-dev-
board-takes-googles-ai-to-the-edge

[10] Vijay Janapa Reddi, et al. 2022. Mlperf Mobile Inference Benchmark:
An Industry-Standard Open-Source Machine Learning Benchmark for
on-Device Ai. Proceedings of MLSys 4 (2022), 352-369.

MLPerf Tiny Benchmark.

Bayer et al.

[11] Myeongjae Jeon, et al. 2019. Analysis of Large-Scale Multi-Tenant
GPU Clusters for DNN Training Workloads. In Proceedings of the 2019
USENIX Annual Technical Conference, USENIX ATC 2019, Renton, WA,
USA, Fuly 10-12, 2019. USENIX Association, 947-960.

[12] Alexandros Koliousis, et al. 2019. Crossbow: scaling deep learning
with small batch sizes on multi-GPU servers. Proceedings of the VLDB
Endowment 12, 11 (July 2019), 1399-1412.

[13] Patrick Lewis, et al. 2020. Retrieval-Augmented Generation for
Knowledge-Intensive NLP Tasks. In Advances in Neural Information
Processing Systems, Vol. 33. Curran Associates, Inc., 9459-9474.

[14] Xinzhe Li. 2025. A Review of Prominent Paradigms for LLM-Based
Agents: Tool Use, Planning (Including RAG), and Feedback Learning.
In Proceedings of the 31st International Conference on Computational
Linguistics. Association for Computational Linguistics, Abu Dhabi,
UAE, 9760-9779.

[15] Samuel Madden, et al. 2024. Databases Unbound: Querying All of
the World’s Bytes with AL. Proc. VLDB Endow. 17, 12 (Aug. 2024),
4546-4554.

[16] Sébastien Marcel. 2010. Torchvision the machine-vision package of
torch. In Proceedings of the 18th ACM international conference on Mul-
timedia. 1485-1488.

[17] Mourad Mourafiq. [n.d.]. Polyaxon: Cloud native machine learning
platform. https://github.com/polyaxon/polyaxon

[18] Vijay Janapa Reddi, et al. 2020. ~MLPerf Inference Benchmark.
arXiv:1911.02549 [cs, stat] (May 2020). arXiv:1911.02549 [cs, stat]

[19] Vijay Janapa Reddi, et al. 2020. MLPerf Mobile Inference Bench-
mark: Why Mobile Al Benchmarking Is Hard and What to Do about
It. arXiv:2012.02328 (2020). arXiv:2012.02328

[20] Ties Robroek, et al. 2023. Data Management and Visualization for
Benchmarking Deep Learning Training Systems. In Proceedings of
the Seventh Workshop on Data Management for End-to-End Machine
Learning. ACM, Seattle WA USA, 1-5.

[21] Ties Robroek, et al. 2024. An Analysis of Collocation on GPUs for
Deep Learning Training. In Proceedings of the 4th Workshop on Machine
Learning and Systems. ACM, Athens Greece, 81-90.

[22] Foteini Strati, et al. 2024. Orion: Interference-aware, Fine-grained GPU
Sharing for ML Applications. In Proceedings of the Nineteenth European
Conference on Computer Systems, EuroSys 2024, Athens, Greece, April
22-25, 2024. ACM, 1075-1092.

[23] Neptune Team. 2019. neptune.ai. Technical Report. https://neptune.ai/

[24] torchtune maintainers. 2024. torchtune: PyTorch’s finetuning library.
https//github.com/pytorch/torchtune

[25] Peter Torelli. 2021. Measuring Inference Performance of Machine-
Learning Frameworks on Edge-Class Devices with the Mlmark
Benchmark. Techincal Report. Available online: https://www.eembc.
org/techlit/articles/ MLMARK-WHITEPAPERFINAL-1.pdf (2021).

[26] Shang Wang, et al. 2021. Horizontally Fused Training Array: An Effec-
tive Hardware Utilization Squeezer for Training Novel Deep Learning
Models. arXiv:2102.02344 [cs] (March 2021).

[27] Thomas Wolf, et al. 2020. HuggingFace’s transformers: State-of-the-art
natural language processing.

[28] Zeyu Yang, et al. 2024. Part-time Power Measurements: nvidia-smi’s
Lack of Attention.

[29] Gingfung Yeung, et al. 2020. Towards GPU utilization prediction for
cloud deep learning. In 12th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 20).

[30] Ehsan Yousefzadeh-Asl-Miandoab, et al. 2023. Profiling and Monitoring
Deep Learning Training Tasks. In Proceedings of the 3rd Workshop on
Machine Learning and Systems. ACM, Rome Italy, 18-25.

[31] Matei Zaharia, et al. 2018. Accelerating the machine learning lifecycle
with MLflow. IEEE Data Eng. Bull. 41, 4 (2018), 39-45.

Received 7th February 2025

https://wandb.ai/site
https://arxiv.org/abs/2106.07597
https://spectrum.ieee.org/the-coral-dev-board-takes-googles-ai-to-the-edge
https://spectrum.ieee.org/the-coral-dev-board-takes-googles-ai-to-the-edge
https://github.com/polyaxon/polyaxon
https://arxiv.org/abs/1911.02549
https://arxiv.org/abs/2012.02328
https://neptune.ai/
https//github.com/pytorch/torchtune

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Modular ML Benchmarking Framework
	4 Conclusion
	Acknowledgments
	References

